#### SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

#### **OUESTION BANK (DESCRIPTIVE)**

Subject with Code: Foundation Engineering (20CE0136)

Course & Branch: B Tech & CE

Year & Sem: III-B.Tech & I-Sem

## **Regulation**: R20

#### **UNIT- I** EARTH PRESSURE THEORIES & RETAINING WALLS

| 1  | Define earth pressure theory and various types of lateral earth pressure with neat sketch.                                                                                                                 | [L2][CO1] | [12M] |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|
| 2  | Determine the lateral earth pressure at rest per unit length of wall as shown in fig. Also                                                                                                                 | [L3][CO1] | [12M] |
|    | determine the resultant earth pressure. Take $K_0=1-Sin\phi'$ , $\gamma_w=10kN/m^3$ .                                                                                                                      |           |       |
|    | $A$ $\phi'=30^{\circ}$ $B$ $T$ $B$ $\psi'=30^{\circ}$ $\phi'=30^{\circ}$ $\phi'=30^{\circ}$ $T$                                                                        |           |       |
| 3  | What are the assumptions of earth pressure theory and derive an expression for Rankines Earth pressure in cohesive soils?                                                                                  | [L2][CO1] | [12M] |
| 4  | Derive expression for Rehbann's method for the determination of active earth pressure with neat sketch.                                                                                                    | [L3][CO1] | [12M] |
| 5  | Discuss culmann's method for the determination of active earth pressure.                                                                                                                                   | [L3][CO1] | [12M] |
| 6  | Determine the active pressure on the retaining wall as shown in fig. Take $\gamma_w = 10$ kN/m <sup>3</sup> .                                                                                              | [L3][CO1] | [12M] |
|    | $A$ $\phi'=35^{\circ}$ $Y = 17 \text{ kN/m}^3$ $B$ $\psi'=38^{\circ}$ $\psi'=38^{\circ}$ $\psi'=38^{\circ}$ $\psi'=38^{\circ}$ $\psi'=38^{\circ}$ $\psi'=38^{\circ}$ $\psi'=38^{\circ}$ $\psi'=38^{\circ}$ |           |       |
| 7  | Explain various types of retaining walls with neat sketch.                                                                                                                                                 | [L2][CO1] | [12M] |
| 8  | With the help of neat sketch explain design of gravity retaining walls.                                                                                                                                    | [L2][CO1] | [12M] |
| 9  | Explain various requirements of stability analysis of Gravity retaining walls.                                                                                                                             | [L2][CO1] | [12M] |
| 10 | A cantilever retaining wall of 7mts height retains sand. The properties of sand are                                                                                                                        | [L3][CO1] | [12M] |
|    | $e=0.5, \varphi=30^{\circ}$ and G=2.7.Using Rankines theory Determine the active earth pressure at the                                                                                                     |           |       |
|    | base when the backfill is (i) dry (ii) saturated (iii)submerged and also the resultant                                                                                                                     |           |       |
|    | active force in each case.                                                                                                                                                                                 |           |       |

### **UNIT –II** SHALLOW FOUNDATIONS & SETTLEMENTS

| 1  | What are different types of shallow foundations? Explain with the help of neat                                                          | [L2][CO2] | [12M] |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|
|    | Sketches?                                                                                                                               |           |       |
| 2  | (a) With neat sketches explain different types of shear failures.                                                                       | [L2][CO2] | [6M]  |
|    | (b) Determine the ultimate bearing capacity of a strip footing, 1.20 m wide, and                                                        |           |       |
|    | having the depth of foundation of 1.0 m. use Terzaghi's theory and assume general                                                       |           |       |
|    | shear failure. Take $\varphi = 35^{\circ}$ , $\gamma = 18 \text{ kN/m}^3$ , and C' = 15 kN/m <sup>2</sup> . Take (N <sub>c</sub> =57.8, | [L3][CO2] | [6M]  |
|    | Nγ=42.4, Nq=41.4)                                                                                                                       |           |       |
| 3  | Discuss effect of water table on the bearing capacity of the soil with neat sketch.                                                     | [L2][CO2] | [12M] |
| 4  | a) List out various parameters for choice of type of foundation.                                                                        | [L1][CO2] | [6M]  |
|    | b) Write various points to consider for fixing depth of foundation.                                                                     | [L1][CO2] | [6M]  |
| 5  | A strip footing of 2m width is founded at a depth of 4m below the ground surface.                                                       | [L3][CO2] | [12M] |
|    | Determine the net ultimate bearing capacity, using a) Terzaghi's equation (Nc=5.7,                                                      |           |       |
|    | $N\gamma=1.0$ , $Nq=0.0$ ) b) Skempton's equation c) IS Code ( $N_c=5.14$ ). The soil is clay                                           |           |       |
|    | $(\varphi=0^{0}, \text{C}-10\text{kN/m}^{2})$ . The unit weight of soil is $20\text{kN/m}^{3}$ .                                        |           |       |
| 6  | Describe how the plate load test is conducted with a neat sketch.                                                                       | [L2][CO2] | [12M] |
| 7  | What are different types of settlements that occur in a foundation?                                                                     | [L2][CO2] | [12M] |
| 8  | Discuss the various methods of determination of allowable soil pressure in cohesion                                                     | [L2][CO2] | [12M] |
|    | less soils.                                                                                                                             |           |       |
| 9  | Discuss the various methods of determination of allowable soil pressure in cohesion                                                     | [L2][CO2] | [12M] |
|    | soils.                                                                                                                                  |           |       |
| 10 | (a) Determine the ultimate bearing capacity of a square footing, resting on the surface                                                 | [L3][CO2] | [6M]  |
|    | of saturated clay of unconfined compressive strength of $98$ kN/m <sup>2</sup> .                                                        |           |       |
|    | (b)A rectangular footing (3 m X 2 m) exerts a pressure of 100 kN/m <sup>2</sup> on a cohesive                                           | [L3][CO2] | [6M]  |
|    | soil (E <sub>s</sub> =5x10 <sup>4</sup> and $\mu$ =0.50).Determine the immediate settlement at the centre,                              |           |       |
|    | assuming a) Footing is flexible b) Footing is rigid.                                                                                    |           |       |

## UNIT –III PILE FOUNDATIONS

| 1  | Define pile foundation. Detail about necessity of pile foundation.                                                     |                          | [L1][CO3]  | [12M]         |
|----|------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|---------------|
| 2  | List out various classifications of pile foundations. Discuss different                                                | methods for              | [L2][CO3]  | [12M]         |
| _  | installation of piles                                                                                                  |                          |            |               |
| 3  | How would you estimate the load carrying capacity of a pile in (a) cohe<br>(b) Cohesive soils by using static methods? | sion less soils          | [L2][CO3]  | [12M]         |
|    | How would you estimate the load corruing consoity of a pile by using d                                                 | unomio                   | [1,2][CO3] | [1 <b>2</b> ] |
| 4  | formulae?                                                                                                              | ynanne                   | [L2][C03]  | [12111]       |
| 5  | A precast concrete pile (35cm x 35cm) is driven by a single –acting stea                                               | am hammer.               | [L3][CO3]  | [12M]         |
|    | Estimate the allowable load using (a) Engineering News Record Formu                                                    | ıla (F.S.=6)             |            |               |
|    | (b)Hiley Formula (F.S.=4) and (c) Danish Formula (F.S. =4).                                                            |                          |            |               |
|    | Use the following data.                                                                                                |                          |            |               |
|    | (i) Maximum rated Energy $= 3500$ kN-m                                                                                 |                          |            |               |
|    | (ii) Weight of hammer $= 35$ kN                                                                                        |                          |            |               |
|    | (iii) Length of pile $= 15m$                                                                                           |                          |            |               |
|    | (iv) Efficiency of hammer $= 0.8$                                                                                      |                          |            |               |
|    | (v) Coefficient of resistitution $= 0.5$                                                                               |                          |            |               |
|    | (vi) Weight of pile cap $= 3kN$                                                                                        |                          |            |               |
|    | (vii) No of blows for last $2.54$ mm = 6                                                                               |                          |            |               |
|    | (viii) Modulus of elasticity of concrete = $2 \times 10^7 \text{ kN/m}^2$                                              |                          |            |               |
|    | Assume any other data, if required. Take the weight of pile as 73.5kN.                                                 |                          |            |               |
| 6  | Explain in detail In-situ penetration tests for pile capacity.                                                         |                          | [L1][CO4]  | [12M]         |
| 7  | a) A 30cm diameter concrete pile is driven into a homogeneous co                                                       | onsolidated clay         | [L3][CO4]  | [6M]          |
|    | deposit ( $c_u=40$ kN/m <sup>2</sup> , $\alpha=0.7$ ). If the embedded length is 10m, estimation (ES -2.5)             | te the safe load         |            |               |
|    | (1.52.5).                                                                                                              |                          |            |               |
|    | b) A square concrete pile (30cm side) 10 m long is driven into coars                                                   | se sand ( $\gamma$ =18.5 | [L2][CO4]  | [6M]          |
|    | kN/m <sup>°</sup> , N=2.0). Determine the allowable load (F.S. =3.0).                                                  |                          |            |               |
| 8  | How would you estimate the group action of piles in (a) sand (b) clay?                                                 |                          | [L2][CO4]  | [12M]         |
| 9  | Describe how the pile load test is conducted with a neat sketch.                                                       |                          | [L2][CO4]  | [12M]         |
| 10 | <b>0</b> Explain settlement of pile groups in (a) cohesion less soils (b) cohesive                                     | soils.                   | [L2][CO4]  | [12M]         |



# UNIT –IV WELL FOUNDATIONS & CAISSON FOUNDATION

|    |                                                                                        | 1         |       |
|----|----------------------------------------------------------------------------------------|-----------|-------|
| 1  | Explain different shapes of wells with neat sketch.                                    | [L1][CO5] | [12M] |
| 2  | Discuss various forces acting on well foundation.                                      | [L1][CO5] | [12M] |
| 3  | What are the various components of well foundations? What are its uses?                | [L1][CO5] | [12M] |
| 4  | Explain various steps involved in sinking operation of wells with neat sketch.         | [L2][CO5] | [12M] |
| 5  | Explain various measures for rectification of Tilts and Shifts with neat sketch.       | [L2][CO5] | [12M] |
| 6  | Explain the construction of open caisson with the help of neat sketch.                 | [L2][CO5] | [12M] |
| 7  | Describe the various components of pneumatic caisson with the help of neat sketch.     | [L2][CO5] | [12M] |
| 8  | Explain the construction of Floating caisson with the help of neat sketch.             | [L2][CO5] | [12M] |
| 9  | What are the advantages and disadvantages of pneumatic caisson over open caisson?      | [L1][CO5] | [12M] |
| 10 | What are the advantages and disadvantages of Floating caisson and discuss stability of | [L1][CO5] | [12M] |
|    | floating caisson during flotation?                                                     |           |       |



## UNIT –V SHEET PILE WALLS

| 1 | What are different types of sheet pile walls? Explain with neat sketch.                                                              |           | [12M] |
|---|--------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|
| 2 | Explain the pressure distribution and stability of free cantilever sheet pile with neat sketch.                                      | [L3][CO6] | [12M] |
| 3 | Explain in detail the pressure distribution of cantilever sheet pile in cohesion less soils with neat sketch.                        | [L3][CO6] | [12M] |
| 4 | Explain in detail the pressure distribution of cantilever sheet pile penetrating clay with neat sketch.                              | [L3][CO6] | [12M] |
| 5 | Explain the stability of anchored sheet piles with free earth support with neat sketch.                                              |           | [12M] |
| 6 | Explain in detail Rowe's moment reduction curves.                                                                                    | [L2][CO6] | [12M] |
| 7 | Explain the procedure used in the analysis of the sheet pile with fixed earth support with neat sketch using equivalent beam method. | [L2][CO6] | [12M] |
| 8 | What are different anchors used in sheet pile walls? Explain the design of anchor pates and beams with neat sketch.                  | [L2][CO6] | [12M] |
| 9 | Determine the required of penetration of the cantilever sheet pile as shown in fig.Take $Y=16 \text{ kN/m}^3$ .                      | [L3][CO6] | [12M] |



Prepared by: Mrs. K.ASHALATHA Asst Professor/CE